Tetrahedron: Asymmetry 11 (2000) 4817

Corrigendum

Corrigendum to "Effect of substrate concentration on the enantioselectivity of cyclohexanone monooxygenase from *Acinetobacter calcoaceticus* and its rationalization" [Tetrahedron: *Asymmetry* 11 (2000) 3653][†]

F. Zambianchi,^a P. Pasta,^{a,*} G. Ottolina,^a G. Carrea,^{a,*} S. Colonna,^b N. Gaggero^b and J. M. Ward^c

^aIstituto di Biocatalisi e Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy ^bCentro CNR and Istituto di Chimica Organica, Facoltà di Farmacia, Via Venezian 21, 20133 Milan, Italy ^cDepartment of Biochemistry and Molecular Biology, University College, Gower Street, London WC1E 6BT, UK

In the legend to Fig. 1, (1R,5S)-2 should be replaced by (1R,5S)-3, (1S,5R)-2 by (1S,5R)-3, (1R,5S)-3 by (1R,5S)-2 and (1S,5R)-3 by (1S,5R)-2. The corrected legend is shown below.

Figure 1. Time course of CYMO-catalyzed oxidation of 1 to lactones 2 and 3. Compound 1 (92 mM) (\geq 98% pure, provided by Fluka) was dissolved in 10 mL of 0.05 M Tris–HCl buffer, pH 8.6, containing 0.5 mM NADP, 1 M 2-propanol, 50 units of CYMO and 200 units of alcohol dehydrogenase from *Thermoanaerobium brokii* for coenzyme regeneration. The degree of conversion and the enantiomeric excess of the products were determined on ethyl acetate extracts by chiral GC with a CP-cyclodextrin column (50 m, 0.25 mm ID, Chrompack) at 130°C with H₂ as a carrier gas. Retention times were: (1*R*,5*S*)-1, 4.758 min; (1*S*,5*R*)-1, 4.799 min; (1*R*,5*S*)-3, 17.40 min; (1*S*,5*R*)-3, 17.60 min; (1*R*,5*S*)-2, 16.63 min; (1*S*,5*R*)-2, 17.28 min. (\bullet) Percentage of remaining substrate 1; (\blacksquare) percentage of formed lactone 2; (\triangle) percentage of formed lactone 3; (\bigcirc) (%) ee of lactone 3

^{*} Corresponding authors. Tel: 390228500024; fax: 390228500036; e-mail: g.carrea@ico.mi.cnr.it

[†] PII of original article: S0957-4166(00)00354-2